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The Multi-Armed Bandit Problem

Formulation

@ n stochastic arms (items e.g. tshirts)

@ Unknown (subgaussian) reward distribution with means
pa > H2 2 3 2 fn

@ Xit~P,, 1=12,---,n t=12,--.
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The Multi-Armed Bandit Problem

Formulation

@ n stochastic arms (items e.g. tshirts)

@ Unknown (subgaussian) reward distribution with means
P > 2 = (3 = [

@ Xjt~P, i=12,---,n t=1,2,---

Best arm ldentification Problem

Given probability of error ¢, find an algorithm that identifies the
best arm using as few samples as possible while satisfying

sup P(i#£1)<$§

b > > > i
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Dueling Bandits Problem

Formulation (Yue et al 2012)

@ Rather than observing rewards, observe binary
comparisons between arms e.g: Is tshirt / better than tshirt
J?

pj = P(arm / > arm j)

@ Binary samples Xj; ; ~Bernoulli(pj)
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Dueling Bandits Problem

Formulation (Yue et al 2012)

@ Rather than observing rewards, observe binary
comparisons between arms e.g: Is tshirt / better than tshirt
J?

pj = P(arm / > arm j)

@ Binary samples Xj; ; ~Bernoulli(pj)

Best Arm Problem

Many criteria for how to decide the best arm (e.g. Condorcet,
Copeland, Borda, etc)
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Best Arm Criteria

{1 2 3 4
1/~ 051 051 051\
> (049 — 099 0.99
31049 001 - 06
4\049 001 04 — /

P —
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Best Arm Criteria

{1 2 3 4
1/~ 051 051 051\
> (049 — 099 0.99
31049 001 - 06
4\049 001 04 — /

P —

@ Condorcet winner: Arm that beats every other arm.
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Best Arm Criteria

1 2 3 4 Borda Score

1, - 051 051 051y 051
b_ 2[049 — 099 099 0.82
31049 001 - 06 0.36
4\049 001 04 -/ 03

@ Condorcet winner: Arm that beats every other arm.
@ Borda winner: Arm with the highest Borda score.
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Best Arm Criteria

1 2 3 4 Borda Score

1, - 051 051 051y 051
b_ 2[049 — 099 099 0.82
31049 001 - 06 0.36
4\049 001 04 -/ 03

@ Condorcet winner: Arm that beats every other arm.
@ Borda winner: Arm with the highest Borda score.

Borda score of arm /: Probability of arm / beating a random
other arm J ~Uniform([n] \ /).
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Best Arm Criteria

1 2 3 4 Borda Score

1, — 051 051 051\ 05
b_ 2[049 — 099 099 0.82 (0.49+0.99+099)

30049 001 — 06 0.36

4\049 001 04 -/ 03

@ Condorcet winner: Arm that beats every other arm.
@ Borda winner: Arm with the highest Borda score.

Borda score of arm /: Probability of arm / beating a random
other arm J ~Uniform([n] \ /).

:
Borda score i = PR %;Pu
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Why has Condorcet received more attention?
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Why has Condorcet received more attention?

@ In a duel between Condorcet and Borda arm, the
Condorcet arm is preferred.

AISTATS 2015 Sparse Dueling Bandits



Why has Condorcet received more attention?

@ In a duel between Condorcet and Borda arm, the
Condorcet arm is preferred.

@ The problem of finding the best Borda arm can be reduced
to a multi-armed bandits(MAB) problem.
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Why has Condorcet received more attention?

@ In a duel between Condorcet and Borda arm, the
Condorcet arm is preferred.

@ The problem of finding the best Borda arm can be reduced

to a multi-armed bandits(MAB) problem.
Take your favorite best-arm MAB algorithm, simulate

sample from arm 1/:
Xit(MAB) := Xjs(Dueling)

where J ~ uniform over [n] \ /.
Referred to as Borda Reduction.
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Borda deserves more attention
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Borda deserves more attention

@ There may not be a Condorcet winner - a row with all
entries > 5.
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Borda deserves more attention

@ There may not be a Condorcet winner - a row with all
entries > 5.

@ Cases where Borda winner may be more appropriate

1 2 3 4y

1 — 051 0.51 051\ 0.51 (Condorcet)
>(049 — 099 099)082 (Borda)
31049 001 - 06 ]0.36
4\049 001 04 -/ 03
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Borda deserves more attention

@ There may not be a Condorcet winner - a row with all
entries > 5.

@ Cases where Borda winner may be more appropriate

1 2 3 4y

1 — 051 0.51 051\ 0.51 (Condorcet)
>(049 — 099 099)082 (Borda)
31049 001 - 06 ]0.36
4\049 001 04 -/ 03

@ Sample complexity for Condorcet O(n?).
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Borda deserves more attention

@ There may not be a Condorcet winner - a row with all
entries > 5.

@ Cases where Borda winner may be more appropriate

1 2 3 4y

1 — 051 0.51 051\ 0.51 (Condorcet)
>(049 — 099 099)082 (Borda)
31049 001 - 06 ]0.36
4\049 001 04 -/ 03

@ Sample complexity for Condorcet O(n?).
@ Better algorithms than Borda reduction?
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|s Borda Reduction the best?

1 3 3 3 €
(— 5 at¢€ 4 2 Tn
1 _ 3 3 3
2 4 4 4
1 1 1 1
1 — ¢ 3 - 2 2
Py =
\_ 1 1 )
4 4 2 2
1 € 3 | € 3 | € 3 €
( - 2Th 4T z+ﬁ\ 2T n
1_ e _ 3 3 3
2 n 4 4 4
1_ e 1 _ 1 1
4 n 4 2 2
Py =
\1_£ 1 1 )
4 n 4 2 2
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|s Borda Reduction the best?

1 3 3 3 | e
(— 5 at¢€ 4 2 T
1 _ 3 3 3
2 4 4 4
1 1 1 1
4 ¢ 17 - 2 2
Py =
\1 1 1 )
4 4 2 2
1 € 3 | € 3 | € 3 €
( - 2Th 4T z+ﬁ\ 2T n
1_ e _ 3 3 3
2 n 4 4 4
1_ e 1 _ 1 1
4 n 4 2 2
Py =
\1_£ 1 1 )
4 n 4 2 2

The sample complexity of Borda reduction for both P; and P- is the same, because
they have the same Borda scores.
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|s Borda Reduction the best?

1 3 3 3 | e
( - 2 ate 4\ +7a
1 _ 3 3 3
2 4 4 4
1_¢ 1 _ 1 1 .
4 4 2 2 If P; were known upto a permutation
P, = o -
1 of the indices, T = O (iz log g)
. €
\ 1 1 1 _/ 1
4 4 2 2
1 € 3 € 3 € 3 €
( - 2Th 4T z+ﬁ\ 2T n
1 _ € _ 3 3 3
2 n 4 4 4
1 _ € 1 _ 1 1 :
4 " n 4 2 2 If P> were known upto a permutation
P, — . = 2
2 of the indices, To = O (”—2 log %)
. €
\1 _ € 1 1 _ ) 1
4 n 4 2 2

The sample complexity of Borda reduction for both P; and P- is the same, because
they have the same Borda scores.
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Pseudo-Complexity of P;

1 2 3 n L4 Aj = g — pj
1 3 3 3 €
[T 2z e 4\ Z7Tn
Tt 3 3 3 e
2 4 4 4 n
LA A 1 1 1
P, =| 3 4 2 2 4
\ 11 1 ) 1
4 4 2 2 4

Imagine we know P; upto a permutation of the indices.
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Pseudo-Complexity of P;

1 2 3 n L4 Aj = g — pj

13 3. 8 ¢

[T 2 7€ 4\ Z7Tn
1 _ 3 3 3 €
2 4 4 4 n
1.1 1 |
Pi=14 4 2 2 4
\1 1 1 _) 1 1
z z 2 2 4

Imagine we know P; upto a permutation of the indices.
@ Duel each arm with O (log 1) others. Complexity O (nlog 7).
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Pseudo-Complexity of P;

1 2 3 n pio A= —
1 3 3 3 €
[T 2 7€ 4\ Z7Tn
T3 3 3 c
2 4 4 4 n

Imagine we know P; upto a permutation of the indices.
@ Duel each arm with O (log 1) others. Complexity O (nlog 7).
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Pseudo-Complexity of P;

1 2 3 n pio A= —
1 3 3 3 €
[T 2 7€ 4\ Z7Tn
T3 3 3 c
2 4 4 4 n

Imagine we know P; upto a permutation of the indices.
@ Duel each arm with O (log 1) others. Complexity O (nlog 7).

@ Duel top 2 arms with each of the remaining n — 2 arms O (5 log §)
times. Complexity O (5 log ¥).

AISTATS 2015 Sparse Dueling Bandits



Pseudo-complexity of P»
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1 _ 3 3 3
2 4 4 4
1 1 1 1
1 ¢ 1 — 2 2 N
n n
P; = T4 _O(e—zlogg>
\ 1 1 1 _) 1
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Sparsity helps!
Can we adaptively learn sparsity and achieve better results?
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Distribution dependent lower bound

1

Borda score = i = —— %I:p,,

Bordagaps = A; = w1 — pi, I > 2

Theorem 1: Consider class of problems P = {P: 2 < p; < 2V j} and class
A of procedures that are guaranteed to find Borda winner with probability at
least1 — 6V P e P.

Then for every P € P and every procedure in A, the expected number of
samples satisfies

1 L, using techniques
Ep[T] > Clog (5) > A; from Kaufmann et

i>2

= al (2014)

Upper bound on sample complexity using Borda reduction and lilUCB
B P ATE Jamieson et al (2014)
r=0 (; A, "log ('09 5 )) Karnin et al (2013)

= Impossible to agnostically exploit sparsity for much, if any, gain
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Sparsity helps!
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Can we adaptively learn sparsity and achieve better results? No!
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Sparsity helps!
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Can we adaptively learn sparsity and achieve better results? No!
Can we do better if we assume sparsity?
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Real World Evidence

Suppose we try to decide if arm 1 is better than arm / > 1 using only the kK most
discriminating duels between arm 1 and arm /

.e. the duels with arms j that have largest values of |py ; — p; /|
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Real World Evidence

Suppose we try to decide if arm 1 is better than arm / > 1 using only the kK most
discriminating duels between arm 1 and arm /

.e. the duels with arms j that have largest values of |py ; — p; /|

Difference between partial Borda scores u1(k) — wj(k) for each 7 > 1.

3

3

MSLR-WEB10k MQ2008-list

11 (k) — pi(k) > 0 based on small number (k) of most discriminating duels
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Sparsity Model

Sparse # of duels
distinguish top
arms from the

best arm

Borda scores

Top

Other

AISTATS 2015 Sparse Dueling Bandits



Sparse Borda Algorithm

Phase 1:
@ Duel arms in “active set”, selecting duels at random.
@ Estimate Borda scores
@ Successively remove lowest scoring arms from “active set”

Active Set

XIX[X[X[X[X]|X[|X[X]|X]|X|X |[e=—
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Sparse Borda Algorithm

Phase 2:
@ Duel arms in “active set”, selecting duels at random.

@ Successively remove lowest scoring arms from “active set” based on
k-subset of Borda scores with largest gaps.

Active set

X| X| X| X =—
X[ X[ XX
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Sparse Borda Algorithm

Assumption: Best arm is differentiated from a suboptimal arm by a small
subset (size at most k) of all possible duels.

Algorithm: Successive elimination of arms based on k most “discriminating”
duels.

Results: Provably improves on sample complexity of simple Borda reduction.

Sample Complexity:

n A2
Borda reduction and lilUCB:T,, = O (Z A% log ('09 ('5 )

=2

n k2 A__Z *
Sparse Borda: Tg, = O ( FAI_Z log (Iog é >>
=2

For small k, Top = O (T—b)

n

*Actual expression more complicated, see paper.
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Sparse Borda Algorithm (simulated data)
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107}

"~ Borda reduction

_ Sparse Borda
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Slope = 2.167904

Slope = 1.093960
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Sparse Borda Algorithm (Microsoft LETOR datasets)

1le5 leb

2.5

-
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