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Problem
Motivation

1) Surveys

µ(1)µ(2)µ(3)µ(4)µ(5)µ(6)

maybe unsafe safeunsafe
large gap

2) Grading

3) Identify Outliers

Formulation
Adaptively sample to partially order distributions according to
their means (identify large gaps).

The simplest problem for 2 clusters is: MaxGap Bandit

MaxGap Bandit: Cluster using largest gap

•K arms with means µ1, . . . , µK.
•Arm with the largest gap

m = arg max
i∈[K−1]

(µ(i) − µ(i+1))

•Defines two clusters
C1 = {(1), . . . , (m)} and C2 = [K] \ C1

• Let algorithm A stop after T (A) samples and return clusters
Ĉ1, Ĉ2 = [K] \ Ĉ1

Objective: min
A
T (A)

subject to P(Ĉ1 6= C1) ≤ 1− δ

Existing Solutions don’t work

•Best Arm Identification on gaps:
1) Only K out of

(
K
2

)
gaps matter

2) arm rewards not independent

•Adaptive Sorting

∆min ∆max

Requires O(K/∆2
min) samples (compared to O(K/∆2

max)
needed in this work)

Solution
Algorithms

•Elimination: Play active arms whose gap upper bound is
higher than the gap lower bound
•UCB: Play all (there will be multiple) arms with the highest
gap UCB
•Top2UCB: Play arms with the top-two highest gap UCBs
How to compute confidence intervals on gaps from confidence
intervals on means?

Gap Upper Bounds: MIP

Computing upper bounds requires solving a MIP
ΔU r

a = max
{b∈[K]:b≠a}

max
µ1,…,µK

(µb − µa)

1) li ≤ µi ≤ ri ∀ i ∈ [K ]
2)∀i ∉ {a, b}, µi ∉ (µa, µb)

µi ≤ µa + M(1 − yi)
µi ≥ µb − Myi

yi ∈ {0,1}

Gap Upper Bounds: Efficient O(K2)
Algorithm

Max-gap if µa known

Max-gap if µa unknown

Gap Lower Bounds

L∆

Analysis
Sample Complexity

H =
∑

i 6={m,m+1}

1
γ2
i

where
γi = min{γri , γli}

γri = max
j:∆i,j>0

min{∆i,j,∆max −∆i,j}

γli = max
j:∆i,j<0

min{∆j,i,∆max −∆j,i}

Distribution i can be eliminated quickly if there is another dis-
tribution j that has a moderately large gap from i (so that this
gap can be easily detected), but not too large so that gap is easy
to distinguish from ∆max.

MaxGap Bandit 6= Best-arm Identification
on Gaps

max

Ui L

Gap of i
Large gap 
in nbrhd

An arm may have a small gap, but if there is a large gap in
its neighborhood, it cannot be eliminated quickly.

Minimax Lower Bound

For the above problem, we prove a lower bound that matches the
upper bound.

Experiments
Empirical vs Theoretical Stopping Time
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Adaptive Gains
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